We present an approach for the verification of feed-forward neural networks in which all nodes have a piece-wise linear activation function. Such networks are often used in deep learning and have been shown to be hard to verify for modern satisfiability modulo theory (SMT) and integer linear programming (ILP) solvers.The starting point of our approach is the addition of a global linear approximation of the overall network behavior to the verification problem that helps with SMT-like reasoning over the network behavior. We present a specialized verification algorithm that employs this approximation in a search process in which it infers additional node phases for the non-linear nodes in the network from partial node phase assignments, similar to unit propagation in classical SAT solving. We also show how to infer additional conflict clauses and safe node fixtures from the results of the analysis steps performed during the search. The resulting approach is evaluated on collision avoidance and handwritten digit recognition case studies.
translated by 谷歌翻译
运行时执行是指针对运行时正式规范执行正确行为的理论,技术和工具。在本文中,我们对用于构建AI中执行安全性的混凝土应用程序域的运行时执行器的技术感兴趣。我们讨论了传统上如何在AI领域处理安全性,以及如何通过集成运行时执行器来提供自我学习代理的安全性。我们调查了此类执法者的一系列工作,在该工作中,我们区分了离散和连续动作空间的方法。本文的目的是更好地理解不同执法技术的优势和局限性,重点关注由于AI在AI中的应用而引起的特定挑战。最后,我们为未来的工作提出了一些开放的挑战和途径。
translated by 谷歌翻译
监督的机器学习方法需要在训练阶段最小化损失功能。顺序数据在许多研究领域中无处不在,并且通常通过为表格数据设计的基于欧几里得距离的损失函数处理。对于平滑的振荡数据,这些常规方法缺乏对同时惩罚幅度,频率和相位预测误差的能力,并且倾向于偏向振幅误差。我们将表面相似性参数(SSP)作为一种新型损耗函数引入,对于平滑振荡序列的训练机器学习模型特别有用。我们对混沌时空动力学系统进行的广泛实验表明,SSP有益于塑造梯度,从而加速训练过程,减少最终预测误差,增加重量初始化的鲁棒性以及与使用经典损失功能相比,实施更强的正则化效果。结果表明,新型损失度量的潜力,特别是对于高度复杂和混乱的数据,例如由非线性二维Kuramoto-Sivashinsky方程以及流体中分散表面重力波的线性传播所引起的数据。
translated by 谷歌翻译
近年来,现代机器学习系统已成功应用于各种任务,但使此类系统对输入实例的对抗完全选择的修改似乎是一个更难的问题。可能会说没有完全满足的解决方案已经找到最新的解决方案,如果标准配方甚至允许原则的解决方案,则尚不清楚。因此,不是遵循有界扰动的经典路径,我们考虑类似于Bshouty和杰克逊引入的量子Pac学习模型[1995]。我们的第一款主要贡献表明,在该模型中,我们可以减少两个经典学习理论问题的结合的对抗性鲁棒性,即(问题1)找到生成模型的问题和(问题2)对尊重的鲁棒分类器的设计问题分配转移。我们的第二个关键贡献是考虑的框架不依赖于特定的(并且因此也有些任意的)威胁模型,如$ \ ell_p $界扰动。相反,我们的减少保证,为了解决我们模型中的对抗鲁棒性问题,它足以考虑一个距离概念,即Hellinger距离。从技术角度来看,我们的协议严重是基于近期量子计算代表团的进步,例如, Mahadev [2018]。虽然被认为的模型是量子,因此没有立即适用于“真实世界”的情况,但可能希望在未来可以找到一种方法可以找到将“真实世界”问题融入量子框架或者可以找到经典算法,其能够模仿其强大的量子对应物。
translated by 谷歌翻译